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The ultimate goal of mathematical modeling is the
optimization of apparatuses and processes. These prob-
lems arise both when designing new processes and
when intensifying existing processes, including the
development of automated process control systems.
The development of process optimization methods was
begun simultaneously with research into the mathemat-
ical modeling of processes. Pioneering works in this
field were carried out by Boreskov and Slin’ko [1] at
the Institute of Catalysis, Siberian Division, Russian
Academy of Sciences. Pontryagin’s maximum princi-
ple [2] was used as the mathematical basis for process
optimization. The application of this principle has stim-
ulated the development of optimization methods for
catalytic processes [3–5].

The variables characterizing a catalytic process are
divided into two groups. The first is made up of phase
variables, which determine the state of a given process
but cannot be directly varied. The second group con-
sists of control variables (controls), which determine
the operating regime and can be varied in order to mod-
ify the course of the process. In chemical processes, the
phase variables are the component concentrations and
the amounts of substances absorbed by the catalyst. The
amount of catalyst, reactor dimensions, feed rate, inlet
temperature, and the composition of the reaction mix-
ture are often regarded as controls.

There are two trends in process optimization. The
first is that an increasingly large number of variable
process parameters are taken into account, including
the number of apparatuses in the flowsheet and the
number of controls involved in the models of separate
apparatuses. The other trend is that progressively more

exact and, accordingly, more complicated mathemati-
cal models are used, implying an increasing amount of
calculations.

The first trend signifies a marked increase in the
dimensionality of the optimization problems to be
solved, and the second makes it more difficult to calcu-
late objective functions. Therefore, it is necessary to
improve optimization methods and to select the quick-
est, the most reliable, and the least laborious ones.
Another essential characteristic of an optimization
method is universality, which means applicability to
various types of problems.

The experience gained by solving numerous prob-
lems suggests that processes should be optimized in
two steps [6, 7].

The first step is theoretical optimization based on a
kinetic model. Solving this problem is followed by
choosing a contact assembly design so as to approach
the theoretical optimum regime (in particular, the opti-
mum temperature regime (OTR)) as close as possible.
It was to these problems that primary importance was
assigned in early studies on the optimization of cata-
lytic processes. A typical result of those studies was the
determination of kinetic model parameters and their
numerical values for the chemical reaction underlying
the process. In some situations, small errors in kinetic
data and, accordingly, in model parameters may lead to
an ambiguous or even qualitatively opposite technolog-
ical interpretation. For example, even if a set of activa-
tion energy data from a given confidence interval sug-
gests that the optimal process is isothermal, another set
may offer a nonisothermal process. Therefore, in the
case of uncertain kinetic constants, it is necessary to
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Abstract

 

—Efficient methods and algorithms have been developed for the optimization of catalytic processes
and reactors. In mathematical terms, these problems reduce to finding the extremum of a functional of a large
number of variables whose domain of variation is subject to various constraints as sets of partial differential
equations and algebraic inequalities. This implies solving problems in which the domain of extremals is closed.
Applying Pontryagin’s maximum principle to catalytic processes described by sets of differential equations
with constrained phase and control variables allows the necessary set of optimal conditions to be found. A
numerical algorithm has been developed for solving nonlinear boundary-value problems that arise when the
maximum principle is employed. The efficiency of this algorithm is demonstrated by the example of the cata-
lytic oligomerization of 

 

α

 

-methylstyrene, a typical process requiring various kinds of optimization problems to
be solved. The theoretical optimization of the process has served as the basis for the engineering optimization
of an industrial reactor. Optimal controls were determined in both the theoretical and engineering optimization
steps.
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evaluate the reliability of theoretical optimization
results and to estimate the limits within which the opti-
mal solution can vary [8, 9].

Note that most theoretical optimization studies have
been qualitative. If a process is described by a simple
kinetic network, its mathematical model consists of two
or three ordinary differential equations and it is possi-
ble to obtain an explicit expression for the Pontryagin
function and for the optimal solution. However, almost
without exception, real systems have a much higher
dimensionality and can be investigated only by numer-
ical experiments. Therefore, it is necessary to develop
efficient numerical methods and adequate, high-service
mathematical tools.

The second step is engineering optimization, which
means calculating optimal controls for the type of reac-
tor chosen. The purpose of this step is to optimize the
design and operation parameters of the reactor: isomet-
ric dimensions, shape, assemblies, temperature varia-
tion rate, pressure, concentrations, etc. The second
most important task is to find the optima of the objec-
tive functions under the constraints imposed on phase
variables. The mathematical aspect of such systems has
been studied to a much lesser extent, so considerable
difficulties in computational experimentation are antic-
ipated.

The theoretical step of optimization will be consid-
ered for a kinetic model of 

 

α

 

-methylstyrene oligomer-
ization in the presence of a zeolite catalyst [10]. Neces-
sary experimental data were obtained under the guid-
ance of Doctor Kutepov at the Laboratory of Catalyst
Preparation, Institute of Petrochemistry and Catalysis,
Academy of Sciences of Bashkortostan and the Ufa
Scientific Center of the Russian Academy of Sciences.
The products of this reaction (linear and cyclic dimers)
have found application as plasticizers, polymer modifi-
ers, rubber, reagents in the manufacture of synthetic
oils, etc.

Here, we introduce the following designations: 

 

x

 

1

 

,

 

α

 

-methylstyrene; 

 

x

 

2

 

, 4-methyl-2,4-diphenylpentene-

 

1
(

 

α

 

-dimer); 

 

x

 

3

 

, 4-methyl-2,4-diphenylpentene-

 

2
(

 

β

 

-dimer); 

 

x

 

4

 

, 1,1,3-trimethyl-3-phenylindan (cyclic
dimer); and 
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, trimers. According to the law of mass
action, the rate equations corresponding to the reaction
network in 
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-methylstyrene oligomerization are writ-
ten as
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 according to the Arrhenius equation
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activation energy of the 
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th reaction (cal/mol); and 
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the universal gas constant (cal mol
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When developing a mathematical model for a pro-
cess, the variation of the number of moles 

 

N

 

 (reaction
volume) during the reaction is taken into account. The
material balance equations for 

 

α

 

-methylstyrene oligo-
merization in the presence of zeolite are written as
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ume, and 
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 are stoichiometric coefficients. The initial
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The set of equations (1) is closed by the following
normalization condition for the liquid-phase compo-
nents:

 

(2)

 

By rearranging the set of equations (1), subject to
condition (2), we obtain the following set of ordinary
nonlinear differential equations:
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 This set of equations provides a mathematical descrip-
tion for 

 
α

 
-methylstyrene oligomerization in the pres-

ence of a zeolite catalyst.

The theoretical optimization of this catalytic pro-
cess is viewed as the problem of finding the optimal
reactor regime  minimizing (maximizing) the opti-
mality criterion defined by the functional
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(5)

Here, ψ0( , ) is the prescribed function of  (process
state variables as functions of the independent vari-
able t) and  (controls).

Depending on the problem to be solved, the opti-
mality criterion (5) may take various forms, including
the following:

(1) t(k) – t(0)  min (for the operation speed prob-
lem);

(2) x2(t(k)) + x3(t(k)) + x4(t(k))  max (for the maxi-
mum product yield problem);

(3) x2(t(k)) + x3(t(k)) – x4(t(k)) – x5(t(k))  max (for
maximizing the yield of desired products while mini-
mizing the yield of by-products, which are cyclic
dimers and trimers);

(4) xj(τr)  max, where cj is the estimated

cost of the jth reaction product (for the economic opti-
mality problem).

In the general case, it is possible that the initial (t(0))
and final (t(k)) values of t are not specified in the initial
formulation of the optimization problem and their
determination should be included in the solution proce-
dure. The initial and final states of the process may be
defined by an incomplete set of xi(t(0)) and xi(t(k)) values,
or the final values of xi may be subject to the constraint

(τr) = d0, where dj are positive or negative con-

stant coefficients (some of them may be zero), τr stands
for the reactor dimensions, and d0 is the overall compo-
sition of the reaction mixture at the reactor outlet. This
type of problem may arise when it is necessary to opti-
mize a process at a fixed product yield or at a preset
conversion of the starting reactant. The region of
admissible controls may be defined as an aggregate of
equalities or inequalities.

Let us consider the problem of optimizing the tem-
perature regime T(t) for α-methylstyrene oligomeriza-
tion in order to maximize the product yield. Let the fol-
lowing constraint be imposed on the optimal tempera-
ture:

T1 ≤ T ≤ T2. (6)

No initial assumptions are made as to reactor dimen-
sions, and the specific features differentiating the cases
of specified and unknown τr values will be discussed
while presenting the solution.

This problem will be solved using Pontryagin’s
maximum principle [2]. An advantage of this mathe-
matical tool is that it allows solutions in the form of dis-
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continuous functions. This type of function appears in
optimization problems for many other catalytic pro-
cesses. The set of constraints involved in the maximum
principle is always closed; that is, the number of equa-
tions is always equal to the number of variables. It is
clear from physical considerations that an optimal
regime does exist; therefore, the single equation
derived from the constraints of the maximum principle
will be optimum. Pontryagin’s maximum principle can
serve as the basis for efficient computational algorithms
for finding optimal controls subject to various con-
straints and allows the optimal solution to be analyzed
on the qualitative level. According to the maximum
principle, the optimum temperature in each cross sec-
tion of the reactor is derived from the maximum condi-
tion for the function

(7)

where x6 = N.

Here, the λi(t) functions satisfy the following set of
conjugate equations:

(8)

The following boundary conditions at t(k) are derived
from the transversality condition for the λi(t) functions:

(9)

Thus, optimizing the temperature regime is reduced
to the problem of integrating the sets of differential
equations given by Eq. (3) and the conjugate set of
equations for the auxiliary functions (Eq. (8)) subject to
boundary conditions imposed on both ends of the inte-
gration interval. That is, this optimization problem
implies solving a nonlinear boundary-value problem.
This type of problem is difficult to solve because, if the
set of equations has a large dimensionality (includes
more than three equations), one can hardly hope to
obtain an analytical solution. For this reason, it is
impossible to find the general integrals of the above sets
of equations and thus determine xi(t) and λi(t) at any t.
Therefore, numerical integration methods have to be
used.

The algorithm for solving the problem is as follows.
In the first step, all unknown functions are assigned
some values. The missing values of variables are set in
a somewhat random manner and are then refined based
on the specified values of the xi(t) and λi(t) functions at
the end of the trajectory.
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In the second step, it is possible to determine the
optimal control corresponding to the initial value of the
independent variable t:

(10)

If there are no constraints imposed on the control
variable, the determination of optimal control in terms
of Eq. (10) can be carried out by any unconstrained
minimization method. However, in view of Eq. (6), the
optimal control is found by constrained minimization
(using the penalty or barrier function method).

Once the optimal control at the initial time point,
Topt(t(0)), is determined, it is possible to make a step for-
ward by setting t = t(0) + ∆t and, using any numerical
method for the integration of sets of differential equa-
tions, determine xi(t) and λi(t).

Next, the optimal control at t = t(0) + ∆t is determined
from the maximum condition (10). This yields a certain
solution of the set of Eqs. (3) and (8). During numerical
integration, it is necessary to see how close the resulting
trajectory is to the specified final point. If the final point
of intergration is preset, this can be done using the rela-
tionship

(11)

if t(k) is not preset,
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In both cases, the value of r shows how good the initial
approximations λi(t(0)) are. The quantity r is viewed as

H λi t 0( )( ) xi t 0( )( ) Topt t 0( )( ), ,( )

=  H λi t 0( )( ) xi t 0( )( ) T, ,( ).
T

max

r xi τk( ) xi
k( )–[ ]2

min,
i 1=

5

∑=

r xi t( ) xi
k( )–[ ]2

.
i 1=

5

∑
t

min=

a function of λi(t(0)) (i = 1, ..., 6). It should be minimized
by choosing an appropriate set of λi(t(0)). In other words,
it is necessary to solve the minimization problem

(13)

This can be done by linear programming methods. The
optimal solution is obtained as a result.

Based on available experimental data, the mathe-
matical description of α-methylstyrene oligomeriza-
tion, and the above algorithm, we developed software
for solving the theoretical optimization problem in

terms of criterion 3 with the initial data  = 1,  = 0,

 = 0,  = 0, and  = 0. The constraint 30°ë ≤ T ≤
130°C was imposed on temperature. The zeolite content
was 10%, and the duration of the reaction was 2 h.

Consider the resulting time dependences of the opti-
mal temperature (Fig. 1) and product concentrations
(Fig. 2) corresponding to the optimal temperature
regime. The optimal temperature is a sectionally con-
tinuous function consisting of three sections: in the
first, the temperature grows from 86°ë to the maxi-
mum; in the second and third, the temperature is con-
stant and has the maximum and minimum values,
respectively. For this temperature regime, the criterion
chosen takes its maximum value and the dimer concen-
trations vary with time as shown in Fig. 2. The α isomer
forms first. Its concentration reaches a maximum in a
rather short time depending on the reaction temperature
and then gradually decreases. The concentration of the
β isomer increases much more slowly and reaches its
maximum at the point at which the optimal control
switches from one isothermal section to the other.

Thus, we have demonstrated the way of optimizing
catalytic processes in terms of the generalized Pontrya-
gin’s maximum principle. A numerical algorithm has
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Fig. 1. Optimal temperature regime for α-methylstyrene
oligomerization on a zeolite catalyst.
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Fig. 2. Concentrations of the products of α-methylstyrene
oligomerization on a zeolite catalyst as a function of time.
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been developed for solving nonlinear boundary-value
problems that arise when Pontryagin’s principle is
employed. This principle is universal and enables one
to solve problems with various input data and various
optimality criteria.

The theoretical step is followed by the optimization
of process design. Some engineering constraints are
usually imposed on controls and phase variables. For
example, the reactor temperature may be limited from
above to rule out thermal damage to the catalyst or
equipment. For very exothermic processes, particularly
those accompanied by changes in volume, some limita-
tions may be imposed on the feed flow rate and the feed
temperature in order to prevent hydrodynamic shocks.

In mathematical terms, the process optimization
problem with engineering constraints is formulated as
follows: find the extremum of a functional of a large
number of variables whose domain of variation is sub-
ject to various constraints as sets of partial differential
equations and algebraic inequalities. These constraints
complicate the optimization problem. It may turn out
that the optimality criterion has no extremum in the
analytical sense and takes the largest or smallest value
when one or several variables are fixed at their limiting
values.

Engineering optimization will be considered for α-
pinene hydrogenation on a nickel silicate catalyst. This
reaction includes an irreversible reaction between α-
pinene and hydrogen and reversible α-pinene isomer-
ization [11]:

Pinene + H2  Pinane,

Pinene  Isomers.

In the liquid phase,

W1 = k1x1yH, where k1 = PCl,

W2 = k2x1 – k3x3, where k2 = Cl, k3 = Cl.

In the gas phase,

w1 = k4y1yH, where k4 = ,

w2 = k5y1 – k6y3, where k5 = Cg, k6 = Cg.

Here, Cg and Cl are the molar densities of the gas and

liquid phases (kmol/m3),  are reaction rate constants
calculated by the Arrhenius equation, Wj and wj are the
reaction rates in the liquid and gas phases (kmol m–3 h–1),
and xi and yi are component concentrations in the liquid
and gas phases (i = 1 for α-pinene, i = 2 for cis-pinane,
and i = 3 for the α-pinene isomers).

Mathematically, the nonisothermal hydrogenation
of α-pinene in a tubular reactor with a fixed catalyst bed
is described by the following set of material- and heat-
balance equations:

k1

k2 k3

k4Cg
2

k5 k6

ki

(14)

with the initial conditions

(15)

where Qj is the heat of the jth reaction (kcal/mol),

∆  is the heat of evaporation of the ith component

(kcal/mol),  and  are the molar heat capacities of
the gas and liquid (kcal mol–1 K–1), Cx is the mass heat
capacity of the cooling agent (kcal kg–1 K–1), Gx is the
weight flow rate of the cooling agent (kg/h),  and

 are the inner and outer specific heat-transfer areas

(m–1), αx is the heat-transfer coefficient (kcal m–2 h–1 ä–1),
L is the molar flow rate of the liquid (kmol/h), l is the
reactor length (m), Vr is the reaction volume (m3), S is
the cross-sectional area of the tubes (m2), Vvap is the
molar evaporation rate (kmol/h), vij are stoichiometric
coefficients, and ϕ is the mole fraction of the gas phase.

Using this mathematical formalism, it is possible to
carry out process design calculations for nonadiabatic
and adiabatic reactors (in the latter case, αx = 0 in the
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heat-balance equation). The longitudinal profiles of
temperature, component concentrations, and liquid and
gas flow rates calculated using Eqs. (14) and (15) are
plotted in Figs. 3–5.

The plots shown in Figs. 3–5 reflect all of the spe-
cific features of the chemical reaction, which is accom-
panied by phase transitions. Flowing from the reactor
inlet to the reactor outlet, the reaction mixture is grad-
ually heated owing to the heat of the reaction, which
mainly takes place in the liquid phase (Fig. 3). At
~180°ë and 4 atm, the draw-off fraction is equal to
unity, so the evaporation rate of the liquid phase is the
highest. As a consequence, the temperature rise rate
decreases sharply and the molar gas flow rate increases
(Fig. 4), although the reaction takes place in the gas
phase. Once the rate at which the number of moles of

matter in the gas phase decreases as a result of the reac-
tion exceeds the evaporation rate, the molar flow rate of
the gas begins to fall again.

Heat evolution in the gas phase accelerates the reac-
tions and causes a sharp temperature rise. As a conse-
quence, there are kinks in the profiles of the reactor
temperature (Fig. 3), of the molar flow rates of the liq-
uid and gas (Fig. 4), and of the component concentra-
tions (Fig. 5).

The highest pinane yield was taken to be the opti-
mality criterion in the optimization of the operating
regime of the fixed-bed tubular flow reactor. The con-
trol variables were reactor pressure (P), inlet tempera-
ture (T), inlet liquid (pinene) flow rate (L), and inlet gas
(hydrogen) flow rate (G). In the computational experi-
ment, we varied one of the controls at fixed values of
the others. The starting set of controls was the follow-
ing: P = 3 atm, L = 350 l/h, and G = 55 m3/h.

For a tubular reactor with tubes 50 mm in diameter
and 2 m in length, the cis-pinane yield and the maxi-
mum reactor temperature are plotted in Figs. 6 and 7,
respectively.

As the pressure or α-pinene flow rate is increased,
the cis-pinane yield tends to an asymptotic limit
(Fig. 6). As the hydrogen flow rate is increased, the cis-
pinane yield passes through a maximum because of the
shortening contact time and the corresponding decrease
in α-pinene conversion. The maximum temperature in
the tubular reactor (Fig. 7) varies monotonically. Spe-
cifically, it rises as the pressure or α-pinene flow rate is
increased and falls as the hydrogen flow rate is raised
because of the decreasing α-pinene conversion.

Thus, we have demonstrated the way of optimizing
catalytic processes in terms of the generalized Pontrya-
gin’s maximum principle. A numerical algorithm has
been developed for solving nonlinear boundary-value
problems that arise when Pontryagin’s principle is
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employed. The efficiency of this algorithm is demon-
strated by the example of the catalytic oligomerization
of α-methylstyrene, a typical process involving various
kinds of optimization problems. The theoretical optimi-
zation of the process has served as the basis for the
engineering optimization of an industrial reactor. Opti-
mal controls were determined in both the theoretical
and engineering optimization steps.

REFERENCES

1. Boreskov, G.K. and Slin’ko, M.G., Teor. Osn. Khim.
Tekhnol., 1967, vol. 1, no. 1, p. 1.

2. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V.,
et al., Matematicheskaya teoriya optimal’nykh pro-
tsessov (Mathematical Theory of Optimal Processes),
Moscow: Fizmatgiz, 1961.

3. Ostrovskii, G.M. and Volin, Yu.M., Metody optimizatsii
slozhnykh khimiko-tekhnologicheskikh sistem (Methods
of Optimization of Complicated Chemical Engineering
Systems), Moscow: Khimiya, 1970.

4. Bykov, V.I., Fedotov, A.V., and Slin’ko, M.G., Teor. Osn.
Khim. Tekhnol., 1974, vol. 8, no. 1, p. 3.

5. Bykov, V.I. and Fedotov, A.V., Optimizatsiya reaktorov s
padayushchei aktivnost’yu katalizatora (Optimization
of Reactors Operating under Decreasing Catalytic Activ-
ity), Novosibirsk: Nauka, 1983.

6. Slin’ko, M.G., Teor. Osn. Khim. Tekhnol., 1999, vol. 33,
no. 5, p. 528.

7. Slin’ko, M.G., Kinet. Katal., 2000, vol. 41, no. 6, p. 933.
8. Kruglov, A.V. and Spivak, S.I., Khim. Tekhnol., 1990,

no. 5, p. 31.
9. Iremadze, E.O., Mustafina, S.A., and Spivak, S.I., Mat.

Model., 2000, vol. 12, no. 3, p. 21.
10. Grigor’eva, N.G., Kutepov, B.I., Khazipova, A.N.,

Mukhamatkhanov, R.A., Bikbaev, R.T., and Kov-
tunenko, I.A., Zh. Prikl. Khim., 2002, vol. 75, no. 9,
p. 1575.

11. Bazhenov, Yu.P., Kas’yanova, L.Z., Bokin, A.I., Kute-
pov, B.I., Khazipova, A.N., Travkin, E.A., Shchad-
neva, N.A., Khusnutdinov, R.I., and Dzhemilev, U.M.,
Zh. Prikl. Khim., 2003, vol. 76, no. 2, p. 242.

2

160

3 4 51
130

190

220

250

280 (‡)

P, atm
0.2

100

0.3 0.4 0.50.1
50

150

200

250

350 (b)

L, m3/h
41

210

51 61 7131
190

230

250

270 (c)
Pinane yield, kg/h

300

81
G, m3/h

Fig. 6. Pinane yield in the tubular reactor as a function of (a) pressure, (b) pinene flow rate, and (c) hydrogen flow rate.

2

110

3 4 5
90

1

130

150

170

190

210 (‡)

P, atm
0.2

110

0.3 0.4 0.5
90

0.1

130

150

170

190

210
(b)

L, m3/h
41 51 61 71

110
31

130

150

170

190

210
(c)

Tmax, °C

G, m3/h
81

Fig. 7. Maximum temperature in the tubular reactor for α-pinene hydrogenation as a function of (a) pressure, (b) pinene flow rate,
and (c) hydrogen flow rate.


